#### Command list

• Input handling
• Solution control and techniques
• Output
• Mesh commands
• Nodes and connectivity
• Material properties
• Initial conditions
• Boundary conditions
• Contact and tied interfaces
• Rigid bodies
• Connectors
• Parameters and functions
• Geometries
• Sets
• Coordinate system
• Particle
• SPH

### MAT_REBAR

###### Material properties
Attention: This command is in the beta stage and the format may change over time.
*MAT_REBAR
"Optional title"
mid, $\rho$, $E$
cid, $c$, $\epsilon_0$, $W_c$, $\tau_{max}$, bend

#### Parameter definition

VariableDescription
mid Unique material identification number
$\rho$ Density
$E$ Young's modulus
cid ID of a CURVE or FUNCTION defining plastic flow stress versus plastic strain
$c$ Strain rate hardening parameter
default: 0
$\epsilon_0$ Reference strain rate
default: 1
$W_c$ Damage parameter
$\tau_{max}$ Maximum shear resistance between rebar and concrete
default: no slip
bend Flag to activate bending stiffness
options:
0 $\rightarrow$ no bending stiffness
1 $\rightarrow$ bending stiffness activated

#### Description

This material model can only be used for concrete reinforcement (see COMPONENT_REBAR, ELEMENT_REBAR). The plastic flow stress is defined as:

$\displaystyle{ \sigma_y = f(\epsilon_{eff}^p) \cdot \left( 1 + \frac{\dot{\epsilon}_{eff}^p}{\epsilon_0} \right)^c}$

where $f(\epsilon_{eff}^p)$ is a user defined CURVE. Ductile failure is modeled with the Cockcroft-Latham failure criterion. A rebar element will be eroded once a damage parameter, $D$, has evolved from 0 to 1. The damage is defined as:

$D = \displaystyle{ \frac{1}{W_c} \int_0^{\epsilon_{eff}^p}} \mathrm{max}(0,\sigma) \mathrm{d}\epsilon_{eff}^p$

where $\sigma$ is the tensile stress in the rebar. Note that damage only grows in tension (i.e. if $\sigma > 0$). $\tau_{max}$ is the maximum shear resistance between rebars and concrete. At shear stresses above $\tau_{max}$ the rebars begin to slide inside the concrete. In the current implementation, the shear resistance is maintained at $\tau_{max}$ even after initiation of sliding.